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Abstract. Hidden Markov models are well-known methods for image
processing. They are used in many areas where 1D data are processed. In
the case of 2D data, there appear some problems with application HMM.
There are some solutions, but they convert input observation from 2D to
1D, or create parallel pseudo 2D HMM, which is set of 1D HMMs in fact.
This paper describes authentic 2D HMM with two-dimensional input
data, and its application for pattern recognition in image processing.
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1 Introduction

Hidden Markov models (HMM) are widely apply in data classification. They are
used in speech recognition, character recognition, biological sequence analysis,
financial data processing, texture analysis, face recognition, etc. [1]This widely
application of HMM is result of its effectiveness. An extension of the HMM to
work on two-dimensional data is 2D HMM. A 2D HMM can be regarded as a
combination of one state matrix and one observation matrix, where transition
between states take place according to a 2D Markovian probability and each
observation is generated independently by the corresponding state at the same
matrix position. It was noted that the complexity of estimating the parameters
of a 2D HMMs or using them to perform maximum a posteriori classification is
exponential in the size of data. Similar to 1D HMM, the most important thing
for 2D HMMs is also to solve the three basic problems, namely, probability
evolution, optimal state matrix and parameters estimation.

When we process one-dimensional data, we have good tools and solution
for this. Unfortunately, this is unpractical in image processing, because the im-
ages are two-dimensional. When you convert an image from 2D to 1D , you
lose some information. So, if we process two-dimensional data, we should apply
two-dimensional HMM, and this 2D HMM should works with 2D data. One of
solutions is pseudo 2D HMM [2–4]. This model is extension of classic 1D HMM.
There are super-states, which mask one-dimensional hidden Markov models (Fig.
1). Linear model is the topology of superstates, where only self transition and
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transition to the following superstate are possible. Inside the superstates there
are linear 1D HMM. The state sequences in the rows are independent of the
state sequences of neighboring rows. Additional, input data are divided to the
vector. So, we have 1D model with 1D data in practise.
Other approach to image processing use two-dimensional data present in works

Fig. 1. Pseudo 2D HMM [1].

[5] and [6]. The solutions base on Markov Random Fields (MRF) and give good
results for classification and segmentation, but not in pattern recognition. In-
teresting results showed in paper [7]. This article presents analytic solution and
proof of correctness two-dimensional HMM. But this 2D HMM is similar to
MRF, works with one-dimensional data and can be apply only for left-right type
of HMM. This article presents real solution for 2D problem in HMM. There is
show true 2D HMM which processes 2D data.

2 Classic 1D HMM

HMM is a double stochastic process with underlying stochastic process that is
not observable (hidden), but can be observed through another set of stochastic
processes that produce a sequence of observation [8]. Let O = {O1, .., OT } be
the sequence of observation of feature vectors, where T is the total number of
feature vectors in the sequence. The statistical parameters of the model may be
defined as follows [9]:

– The number of states of the model, N
– The number of symbols M
– The transition probabilities of the underlying Markov chain, A = {aij}, 1 ≤
i, j ≤ N , where aij is the probability of transition from state i to state j
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– The observation probabilities, B = {bjm)} 1 ≤ j ≤ N, 1 ≤ m ≤ M which
represents the probability of gnerate the mth symbol in the jth state.

– The initial probability vector, Π = {πi} 1 ≤ i ≤ N.

Fig. 2. One-dimensional HMM.

Hence, the HMM requires three probability measures to be defined,A,B,Π
and the notation λ = (A,B,Π) is often used to indicate the set of parameters
of the model. In the proposed method, one model is made for each part of the
face. The parameters of the model are generated at random at the beginning.
Then they are estimated with Baum-Welch algorithm, which is based on the
forward-backward algorithm. The forward algorithm calculates the coefficient
αt(i) (probability of observing the partial sequence (o1, , ot) such that state qt
is i). The backward algorithm calculates the coefficient βt(i) (probability of
observing the partial sequence (ot+1, , oT ) such that state qt is i). The Baum-
Welch algorithm, which computes the λ, can be described as follows [9]:

1. Let initial model be λ0
2. Compute new λ based on λ0 and observation O
3. If log(P (O|λ)− log(P (O)|λ0) < DELTA stop
4. Else set λ→ λ0 and go to step 2.

The parameters of new model λ, based on λ0 and observation O, are esti-
mated from equation of Baum-Welch algorithm [8], and then are recorded to the
database.

3 Three basic problems

There are three fundamental problems of interest that must be solved for HMM
to be useful in some applications. These problems are the following:

1. Given observation O = (o1, o2, , oT ) and model λ = (A,B,Π), efficiently
compute P (O|λ)

2. Given observation O = (o1, o2, , oT ) and model λ find the optimal state
sequence q = (q1, q2, , qT )

3. Given observationO = (o1, o2, , oT ), estimate model parameters λ = (A,B,Π)
that maximize P (O|λ)
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3.1 Solution to Problem 1

Forward Algorithm [9]

– Define forward variable αt(i) as:

αt(i) = P (o1, o2, , ot, qt = i|λ) (1)

– αt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

– Induction

1. Initialization:

α1(i) = πibi(o1) (2)

2. Induction:

αt+1(i) =

[ N∑
i=1

αt(i)aij

]
bj(ot+1) (3)

3. Termination:

P (O|λ) =

N∑
i=1

αT (i) (4)

Backward Algorithm [9]

– Define backward variable βt(i) as:

βt(i) = P (ot+1, ot+2, , oT , qt = i|λ) (5)

– βt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

– Induction

1. Initialization:

βT (i) = 1 (6)

2. Induction:

βt(i) =

N∑
i=1

aijbj(ot+1βt+1(j), (7)

1 ≤ i ≤ N, t = T − 1, ..., 1

3. Termination:

P (O|λ) =

N∑
i=1

β1(i) (8)
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3.2 Solution to Problem 2

Viterbi Algorithm [10]

– Initialization:
δ1(i) = πibi(o1), 1 ≤ i ≤ N (9)

1 ≤ i ≤ N

ψ1 = 0 (10)

– Recursion:
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(ot) (11)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ]bj(ot) (12)

1 ≤ j ≤ N, 2 ≤ t ≤ T

– Termination:
P ∗ = max

1≤i≤N
[δt(i)] (13)

q∗t = arg max
1≤i≤N

[δt(i)] (14)

– Backtracking:
q∗t = ψt(q

∗
t+1) (15)

t = T − 1, T − 2, ..., 1

3.3 Solution to Problem 3

Baum-Welch Algorithm [9]:

– Define ξ(i, j) as the probability of being in state i at time t and in state j
at time t+ 1

ξ(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj(ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

(16)
– Define γ(i) as the probability of being in state i at time t, given observation

sequence.

γt(i) =

N∑
j=1

ξt(i, j) (17)

–
∑T

t=1 γt(i) is the expected number of times state i is visited

–
∑T−1

t=1 ξt(i, j) is the expected number of transition from state i to j

Update rules:

– π̄i = expected frequency in state i at time (t = 1) = γ1(i)
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– āij = (expected number of transition from state i to state j)/(expected
number of transitions from state i:

āij =

∑
t ξt(i, j)∑
t γt(i)

(18)

– b̄j(k) = (expected number of times in state j and oserving symbol k)/(expected
number of times in state j:

b̄j(k) =

∑
t,ot=k γt(j)∑

t γt(j)
(19)

4 2D HMM

In paper [7], Yujian proposed definitions and proofs of 2D HMM. He has pre-
sented several analytic formulae for solving the three basic problems of 2-D
HMM. Solution to Problem 2 is usefull., and Viterbi algorithm can be easily
adopted to image recognition with two dimensional input data. Unfortunetly,
solution to problem 1 and 3 may be use only with one dimensional data -
observation vector. Besides presented solutions are for Markov model type ”left-
right”, and not ergodic. So, I present solution to problems 1 and 3 for two
dimensional data. The statistical parameters of the 2D model (Fig. 3):

– The number of states of the model N2

– The number of data streams k1 x k2 = K
– The number of symbols M
– The transition probabilities of the underlying Markov chain, A = {aijl}, 1 ≤
i, j ≤ N, 1 ≤ l ≤ N2, where aij is the probability of transition from state ij
to state l

– The observation probabilities, B = {bijm)}, 1 ≤ i, j ≤ N, 1 ≤ m ≤M which
represents the probability of gnerate the mth symbol in the ijth state.

– The initial probability, Π = {πijk}, 1 ≤ i, j ≤ N, 1 ≤ k ≤ K.
– Oservation sequance O = {ot}, 1 ≤ t ≤ T, ot is square matrix simply obser-

vation with size k1 x k2 = K

4.1 Solution to 2D Problem 1

Forward Algorithm

– Define forward variable αt(i, j, k) as:

αt(i, j, k) = P (o1, o2, , ot, qt = ij|λ) (20)

– αt(i, j, k) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i, j for each kth strem of data

– Induction
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Fig. 3. Two-dimensional ergodic HMM.

1. Initialization:

α1(i, j, k) = πijkbij(o1) (21)

2. Induction:

αt+1(i, j, k) =

[ N∑
l=1

αt(i, j, k)aijl

]
bij(ot+1) (22)

3. Termination:

P (O|λ) =

T∑
t=1

K∑
k=1

αT (i, j, k) (23)

4.2 Solution to 2D Problem 3

Parameters reestimation Algorithm:

– Define ξ(i, j, l) as the probability of being in state ij at time t and in state
l at time t+ 1 for each kth strem of data

ξt(i, j, l) =
αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)

P (O|λ)
=

αt(i, j, k)aijbij(ot+1)βt+1(i, j, k)∑K
k=1

∑N2

l=1 αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)
(24)
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– Define γ(i, j) as the probability of being in state i, j at time t, given obser-
vation sequence.

γt(i, j) =

N2∑
l=1

ξt(i, j, l) (25)

–
∑T

t=1 γt(i, j) is the expected number of times state ij is visited

–
∑T−1

t=1 ξt(i, j, l) is the expected number of transition from state ij to l

Update rules:

– ¯πijk = expected frequency in state i, j at time (t = 1) = γ1(i, j)
– āij = (expected number of transition from state i, j to state l)/(expected

number of transitions from state i, j:

āijl =

∑
t ξt(i, j, l)∑
t γt(i, j)

(26)

– b̄ij(k) = (expected number of times in state j and oserving symbol k)/(expected
number of times in state j:

b̄ij(k) =

∑
t,ot=k γt(i, j)∑

t γt(i, j)
(27)

5 Experimenting

The image database Amsterdam Library of Object Images was used in experi-
menting. It is a color image collection of one-thousand small objects, recorded
for scientific purposes. In order to capture the sensory variation in object record-
ings, they systematically varied viewing angle, illumination angle, and illumina-
tion color for each object, and additionally captured wide-baseline stereo images.
They recorded over a hundred images of each object, yielding a total of 110,250
images for the collection [11, 12].
In order to verify the method has benn selected fifty objects. Three images for
learning and three for testing has been chosen for each object. The 2D HMM has
been implemented with parameters N = 5, N2 = 25,K = 25,M = 50. Wavelet
transform has been chosen as features extraction technigue. Table 1 presents
The results of experiments.

Table 1. Comparison of recognition rate

Method Recognition rate [%]

Eigenvector 94
1D HMM 84
2D HMM 92
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6 Conclusion

Article presents a new conception about two-dimensional hidden Markov models.
We show solutions of principle problems for ergodic 2D HMM, which may be
applied for 2D data. Recognition rate of the method is 92%, which is better than
1D HMM. Furthermore, the advantage of this approach is that there is no need
to convert the input two-dimensional image on a one-dimensional data and we
do not lose the information.
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